import tensorflow as tf from tensorflow.keras import datasets, layers, models import matplotlib.pyplot as plt print("TensorFlow version:", tf.__version__) print("CUDA runtime version:", tf.sysconfig.get_build_info()['cuda_version']) # Load the CIFAR-10 dataset (train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data() # Normalize pixel values to be between 0 and 1 train_images, test_images = train_images / 255.0, test_images / 255.0 # Verify the data class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] plt.figure(figsize=(10,10)) for i in range(25): plt.subplot(5,5,i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(train_images[i]) plt.xlabel(class_names[train_labels[i][0]]) plt.show() # Build the CNN model model = models.Sequential() model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3))) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='relu')) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='relu')) model.add(layers.Flatten()) model.add(layers.Dense(64, activation='relu')) model.add(layers.Dense(10)) # Compile the model model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) # Train the model history = model.fit(train_images, train_labels, epochs=20, validation_data=(test_images, test_labels)) # Оценка модели test_loss, test_acc = model.evaluate(train_images, train_labels, verbose=2) print(f"Test accuracy: {test_acc:.4f}") # Построение графиков plt.figure(figsize=(12, 4)) # График точности plt.subplot(1, 2, 1) plt.plot(history.history['accuracy'], label='train accuracy') plt.plot(history.history['val_accuracy'], label='val accuracy') plt.xlabel('Epoch') plt.ylabel('Accuracy') plt.legend(loc='lower right') plt.title('Training and Validation Accuracy') # График потерь plt.subplot(1, 2, 2) plt.plot(history.history['loss'], label='train loss') plt.plot(history.history['val_loss'], label='val loss') plt.xlabel('Epoch') plt.ylabel('Loss') plt.legend(loc='upper right') plt.title('Training and Validation Loss') plt.show()